Búsqueda

An AI Vision for the actuarial profession

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a22000004  4500</leader>
    <controlfield tag="001">MAP20240019396</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20241201195800.0</controlfield>
    <controlfield tag="008">241201e20240730usa|| p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20200014157</subfield>
      <subfield code="a">Richman, Ronald</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="3">
      <subfield code="a">An AI Vision for the actuarial profession</subfield>
      <subfield code="c">Ronald Richman</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">This essay explores the potential impact of AI on the actuarial profession, discussing how actuaries can harness AI tools and techniques to enhance their work and create value for society, policyholders, insurers, and the profession itself. They differentiate between general AI and specific AI-driven applications, focusing on the latter's potential to revolutionize core actuarial tasks such as pricing and reserving. The essay  resents a vision of the AI-enhanced actuary, who leverages AI to build more accurate and efficient models, incorporates new data sources, and automates routine tasks while adhering to professional and ethical standards. They also discuss the challenges and speed-bumps along the way, including explainability, bias and discrimination risks, regulatory hurdles, and the need for actuaries to acquire AI knowledge and skills. The essay argues that the integration of AI into actuarial practice represents a natural evolution of the profession, building upon its foundation of mathematical and statistical techniques. By embracing AI and developing new skills, actuaries can unlock opportunities for innovation, efficiency, and value creation, both within the insurance industry and beyond. This essay aims to encourage the evolution of the AI-enhanced actuary, who is well-positioned to shape the future of insurance and contribute to the responsible development and deployment of AI systems across various domains</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080549497</subfield>
      <subfield code="a">Actuarios</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080611200</subfield>
      <subfield code="a">Inteligencia artificial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080564322</subfield>
      <subfield code="a">Tarificación</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080598716</subfield>
      <subfield code="a">Reservas matemáticas</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080568009</subfield>
      <subfield code="a">Automatización</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080632151</subfield>
      <subfield code="a">Técnicas estadísticas multivariantes</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080623487</subfield>
      <subfield code="a">Profesionales especializados</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20170005476</subfield>
      <subfield code="a">Machine learning</subfield>
    </datafield>
    <datafield tag="710" ind1="2" ind2=" ">
      <subfield code="0">MAPA20240023003</subfield>
      <subfield code="a">The Casualty Actuarial Society</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="t">The Casualty Actuarial Society E-Forum.- Fairfax (Virginia) : Casualty Actuarial Society.</subfield>
      <subfield code="g">Summer (July) 2024 ; 14 p.</subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="u">https://eforum.casact.org/section/2971-essays</subfield>
    </datafield>
  </record>
</collection>