El propósito de este proyecto es desarrollar modelos de predicción de la probabilidad de incumplimiento sobre una cartera de clientes de una entidad bancaria española. Se exploran diversas técnicas, desde las más tradicionales; como la regresión logística, hasta métodos más avanzados como Random Forest, XGBoost o redes neuronales, basados en el aprendizaje automático y profundo. El objetivo principal es determinar si estas técnicas modernas ofrecen ventajas significativas en comparación con los métodos convencionales y cuantificar en qué medida esto ocurre para una muestra actual
Modelización del riesgo de crédito con técnicas de Machine y Deep Learning
El propósito de este proyecto es desarrollar modelos de predicción de la probabilidad de incumplimiento sobre una cartera de clientes de una entidad bancaria española. Se exploran diversas técnicas, desde las más tradicionales; como la regresión logística, hasta métodos más avanzados como Random Forest, XGBoost o redes neuronales, basados en el aprendizaje automático y profundo. El objetivo principal es determinar si estas técnicas modernas ofrecen ventajas significativas en comparación con los métodos convencionales y cuantificar en qué medida esto ocurre para una muestra actual