Búsqueda

Applying ensemble neural networks to analyze industrial maintenance : Influence of Saharan dust transport on gas turbine axial compressor fouling

Applying ensemble neural networks to analyze industrial maintenance : Influence of Saharan dust transport on gas turbine axial compressor fouling
Recurso electrónico / Electronic resource
Registro MARC
Tag12Valor
LDR  00000cab a2200000 4500
001  MAP20210031342
003  MAP
005  20220911185809.0
008  211028e20211004esp|||p |0|||b|spa d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎922.134
24500‎$a‎Applying ensemble neural networks to analyze industrial maintenance‎$b‎: Influence of Saharan dust transport on gas turbine axial compressor fouling‎$c‎D. Gonzalez Calvo...[et.al]
520  ‎$a‎The planning of industrial maintenance associated with the production of electricity is vital, as it yields a current and future snapshot of an industrial component in order to optimize the human, technical and economic resources of the installation. This study focuses on the degradation due to fouling of a gas turbine in the Canary Islands, and analyzes fouling levels over time based on the operating regime and local meteorological variables. In particular, we study the relationship between degradation and the suspended dust that originates in the Sahara Desert. To this end, we use a computational procedure that relies on a set of artificial neural networks to build an ensemble, using a cross-validated committees approach, to yield the compressor efficiency. The use of trained models makes it possible to know in advance how the local fouling of an industrial rotating component will evolve, which is useful for maintenance planning and for calculating the relative importance of the variables that make up the system
540  ‎$a‎La copia digital se distribuye bajo licencia "Attribution 4.0 International (CC BY NC 4.0)"‎$f‎‎$u‎https://creativecommons.org/licenses/by-nc/4.0‎$9‎64
650 4‎$0‎MAPA20080611200‎$a‎Inteligencia artificial
650 4‎$0‎MAPA20080549275‎$a‎Turbinas
7730 ‎$w‎MAP20200034445‎$g‎04/10/2021 Volumen 24 Número 68 - octubre 2021 , p. 53-71‎$x‎1988-3064‎$t‎Revista Iberoamericana de Inteligencia Artificial‎$d‎ : IBERAMIA, Sociedad Iberoamericana de Inteligencia Artificial , 2018-
856  ‎$q‎application/pdf‎$w‎901‎$y‎Recurso electrónico / Electronic resource