Predicting and interpreting identification errors in military vehicle training using multidimensional scaling
<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="http://www.loc.gov/mods/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/mods/v3 http://www.loc.gov/standards/mods/v3/mods-3-8.xsd">
<mods version="3.8">
<titleInfo>
<title>Predicting and interpreting identification errors in military vehicle training using multidimensional scaling</title>
</titleInfo>
<name type="personal" usage="primary" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MAPA20140012138">
<namePart>Bohil, Corey J.</namePart>
<nameIdentifier>MAPA20140012138</nameIdentifier>
</name>
<typeOfResource>text</typeOfResource>
<genre authority="marcgt">periodical</genre>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">esp</placeTerm>
</place>
<dateIssued encoding="marc">2014</dateIssued>
<issuance>serial</issuance>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</language>
<physicalDescription>
<form authority="marcform">print</form>
</physicalDescription>
<abstract displayLabel="Summary">We compared methods for predicting and understanding the source of confusion errors during military vehicle identification training. Participants completed training to identify main battle tanks. They also completed card-sorting and similarity-rating tasks to express their mental representation of resemblance across the set of training items. We expected participants to selectively attend to a subset of vehicle features during these tasks, and we hypothesised that we could predict identification confusion errors based on the outcomes of the card-sort and similarity-rating tasks. Based on card-sorting results, we were able to predict about 45% of observed identification confusions. Based on multidimensional scaling of the similarity-rating data, we could predict more than 80% of identification confusions. These methods also enabled us to infer the dimensions receiving significant attention from each participant. This understanding of mental representation may be crucial in creating personalised training that directs attention to features that are critical for accurate identification.</abstract>
<note type="statement of responsibility">Corey J. Bohil, Nicholas A. Higgins, Joseph R. Keebler</note>
<classification authority="">875</classification>
<relatedItem type="host">
<titleInfo>
<title>Ergonomics : the international journal of research and practice in human factors and ergonomics</title>
</titleInfo>
<originInfo>
<publisher>Oxon [United Kingdom] : Taylor & Francis, 2010-</publisher>
</originInfo>
<identifier type="issn">0014-0139</identifier>
<identifier type="local">MAP20100019818</identifier>
<part>
<text>02/06/2014 Volumen 57 Número 6 - junio 2014 </text>
</part>
</relatedItem>
<recordInfo>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">140717</recordCreationDate>
<recordChangeDate encoding="iso8601">20140724124911.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20140025718</recordIdentifier>
<languageOfCataloging>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>
</languageOfCataloging>
</recordInfo>
</mods>
</modsCollection>