Testing for a unit root in Lee-Carter mortality model
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20170030454</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20170921164217.0</controlfield>
<controlfield tag="008">170920e20170829bel|||p |0|||b|eng d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">345</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">MAPA20170011958</subfield>
<subfield code="a">Leng, Xuan</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Testing for a unit root in Lee-Carter mortality model</subfield>
<subfield code="c">Xuan Leng, Liang Peng</subfield>
</datafield>
<datafield tag="300" ind1=" " ind2=" ">
<subfield code="a">21 p.</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Motivated by a recent discovery that the two-step inference for the LeeCarter mortality model may be inconsistent when the mortality index does not follow from a nearly integrated AR(1) process, we propose a test for a unit root in a LeeCartermodelwith an AR(p) process for themortality index. Although testing for a unit root has been studied extensively in econometrics, the method and asymptotic results developed in this paper are unconventional. Unlike a blind application of existing R packages for implementing the two-step inference procedure in Lee and Carter (1992) to the U.S. mortality rate data, the proposed test rejects the null hypothesis that the mortality index follows from a unit root AR(1) process, which calls for serious attention on using the future mortality projections based on the LeeCarter model in policy making, pricing annuities and hedging longevity risk. A simulation study is conducted to examine the finite sample behavior of the proposed test too.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080555306</subfield>
<subfield code="a">Mortalidad</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080555016</subfield>
<subfield code="a">Longevidad</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080544249</subfield>
<subfield code="a">Índices</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080592011</subfield>
<subfield code="a">Modelos actuariales</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080586454</subfield>
<subfield code="a">Modelos analíticos</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="0">MAPA20080653569</subfield>
<subfield code="a">Peng, Liang</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000420</subfield>
<subfield code="t">Astin bulletin</subfield>
<subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
<subfield code="x">0515-0361</subfield>
<subfield code="g">01/09/2017 Volumen 47 Número 3 - septiembre 2017 , p. 715-735</subfield>
</datafield>
</record>
</collection>