Pesquisa de referências

On the optimal combination of annuities and tontines

<?xml version="1.0" encoding="UTF-8"?><modsCollection xmlns="" xmlns:xsi="" xsi:schemaLocation="">
<mods version="3.8">
<title>On the optimal combination of annuities and tontines</title>
<name type="personal" xmlns:xlink="" xlink:href="MAPA20200006633">
<namePart>Rach, Manuel </namePart>
<name type="personal" xmlns:xlink="" xlink:href="MAPA20200006640">
<namePart>Sehner, Thorsten </namePart>
<genre authority="marcgt">periodical</genre>
<placeTerm type="code" authority="marccountry">bel</placeTerm>
<dateIssued encoding="marc">2020</dateIssued>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<form authority="marcform">print</form>
<abstract displayLabel="Summary">Tontines, retirement products constructed in such a way that the longevity risk is shared in a pool of policyholders, have recently gained vast attention from researchers and practitioners. Typically, these products are cheaper than annuities, but do not provide stable payments to policyholders. This raises the question whether, from the policyholders' viewpoint, the advantages of annuities and tontines can be combined to form a retirement plan which is cheaper than an annuity, but provides a less volatile retirement income than a tontine. In this article, we analyze and compare three approaches of combining annuities and tontines in an expected utility framework: the previously introduced "tonuity", a product very similar to the tonuity which we call "antine" and a portfolio consisting of an annuity and a tontine. We show that the payoffs of a tonuity and an antine can be replicated by a portfolio consisting of an annuity and a tontine. Consequently, policyholders achieve higher expected utility levels when choosing the portfolio over the novel retirement products tonuity and antine. Further, we derive conditions on the premium loadings of annuities and tontines indicating when the optimal portfolio is investing a positive amount in both annuity and tontine, and when the optimal portfolio turns out to be a pure annuity or a pure tontine.</abstract>
<note type="statement of responsibility">An Chen, Manuel Rach, Thorsten Sehner</note>
<subject xmlns:xlink="" xlink:href="MAPA20080549206">
<subject xmlns:xlink="" xlink:href="MAPA20080579258">
<topic>Cálculo actuarial</topic>
<subject xmlns:xlink="" xlink:href="MAPA20080602437">
<topic>Matemática del seguro</topic>
<subject xmlns:xlink="" xlink:href="MAPA20090039612">
<topic>Planes de jubilación</topic>
<subject xmlns:xlink="" xlink:href="MAPA20080573614">
<topic>Renta vitalicia</topic>
<classification authority="">6</classification>
<relatedItem type="host">
<title>Astin bulletin</title>
<publisher>Belgium : ASTIN and AFIR Sections of the International Actuarial Association</publisher>
<identifier type="issn">0515-0361</identifier>
<identifier type="local">MAP20077000420</identifier>
<text>01/01/2020 Volumen 50 Número 1 - enero 2020 , p. 95-129</text>
<recordContentSource authority="marcorg">MAP</recordContentSource>
<recordCreationDate encoding="marc">200326</recordCreationDate>
<recordChangeDate encoding="iso8601">20200326142038.0</recordChangeDate>
<recordIdentifier source="MAP">MAP20200009924</recordIdentifier>
<languageTerm type="code" authority="iso639-2b">spa</languageTerm>