Optimal reinsurance from the viewpoints of both an insurer and a reinsurer under the cvar risk measure and vajda condition
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20210027383</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20210922173115.0</controlfield>
<controlfield tag="008">210920e2021 esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">MAPA20210031922</subfield>
<subfield code="a">Chen, Yanhong </subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Optimal reinsurance from the viewpoints of both an insurer and a reinsurer under the cvar risk measure and vajda condition</subfield>
<subfield code="c">Yanhong Chen</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">In this paper, we study the optimal reinsurance contracts that minimize the convex combination of the Conditional Value-at-Risk (CVaR) of the insurer's loss and the reinsurer's loss over the class of ceded loss functions such that the retained loss function is increasing and the ceded loss function satisfies Vajda condition. Among a general class of reinsurance premium principles that satisfy the properties of risk loading and convex order preserving, the optimal solutions are obtained. Our results show that the optimal ceded loss functions are in the form of five interconnected segments for general reinsurance premium principles, and they can be further simplified to four interconnected segments if more properties are added to reinsurance premium principles. Finally, we derive optimal parameters for the expected value premium principle and give a numerical study to analyze the impact of the weighting factor on the optimal reinsurance.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080552367</subfield>
<subfield code="a">Reaseguro</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080602437</subfield>
<subfield code="a">Matemática del seguro</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000420</subfield>
<subfield code="t">Astin bulletin</subfield>
<subfield code="d">Belgium : ASTIN and AFIR Sections of the International Actuarial Association</subfield>
<subfield code="x">0515-0361</subfield>
<subfield code="g">10/05/2021 Volumen 51 Número 2 - mayo 2021 , p. 631 - 659</subfield>
</datafield>
</record>
</collection>