Pesquisa de referências

CNN-based Approach for Robust Detection of Copy-Move Forgery in Images

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20240013301</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20240829122008.0</controlfield>
    <controlfield tag="008">240829e20240619esp|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">922.131</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">CNN-based Approach for Robust Detection of Copy-Move Forgery in Images</subfield>
      <subfield code="c">Arivazhagan S. [et al.]</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">With the rise of high-quality forged images on social media and other platforms, there is a need for algorithms that can recognize the originality. Detecting copy-move forgery is essential for ensuring the authenticity and integrity of digital images, preventing fraud and deception, and upholding the law. Copy-move forgery is the act of duplicating and pasting a portion of an image to another location within the same image. To address these issues, we propose two deep learning approaches - one using a custom architecture and the other using transfer learning. We test our method against a number of benchmark datasets and demonstrate that, in terms of accuracy and robustness against various types of image distortions, it outperforms current state-of-the-art methods. Our proposed method has applications in digital forensics, copyright defence, and image authenticity</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080541064</subfield>
      <subfield code="a">Fraude</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080545932</subfield>
      <subfield code="a">Análisis</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080541408</subfield>
      <subfield code="a">Imagen</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579975</subfield>
      <subfield code="a">Derechos de autor</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20240002428</subfield>
      <subfield code="a">Autentificación biométrica</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080611200</subfield>
      <subfield code="a">Inteligencia artificial</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20240020873</subfield>
      <subfield code="a">S., Arivazhagan </subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20200034445</subfield>
      <subfield code="g">19/06/2024 Volumen 27 Número 73 - junio 2024 , p.80-91</subfield>
      <subfield code="x">1988-3064</subfield>
      <subfield code="t">Revista Iberoamericana de Inteligencia Artificial</subfield>
      <subfield code="d"> : IBERAMIA, Sociedad Iberoamericana de Inteligencia Artificial , 2018-</subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="u">https://journal.iberamia.org/index.php/intartif/article/view/1078</subfield>
    </datafield>
  </record>
</collection>