Pesquisa de referências

AI could transform catastrophe modelling of secondary perils

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a22000004b 4500</leader>
    <controlfield tag="001">MAP20250016200</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20251010095008.0</controlfield>
    <controlfield tag="008">250716e20250916gbr|| p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">328.1</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20250002951</subfield>
      <subfield code="a">Geer, Joshua </subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">AI could transform catastrophe modelling of secondary perils</subfield>
      <subfield code="c">Joshua Geer</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Artificial intelligence (AI) and machine learning (ML) are poised to significantly enhance catastrophe modelling for secondary perils, such as severe convective storms, derechos, tornadoes, and wildfires, by leveraging vast amounts of high-resolution atmospheric data. Karen Clark, founder of Karen Clark & Company, emphasized during the Rendez-Vous de Septembre in Monte Carlo that AI and ML can improve forecasting accuracy for events traditionally difficult to predict, like derechos and tornado touchdowns, and can also help model wildfire behavior by analyzing wind patterns that influence fire spread</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080600204</subfield>
      <subfield code="a">Catástrofes naturales</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080611200</subfield>
      <subfield code="a">Inteligencia artificial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080629755</subfield>
      <subfield code="a">Seguro de riesgos extraordinarios</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20170005476</subfield>
      <subfield code="a">Machine learning</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080592059</subfield>
      <subfield code="a">Modelos predictivos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080608392</subfield>
      <subfield code="a">Riesgos meteorológicos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080551292</subfield>
      <subfield code="a">Incendios</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="t">Insurance ERM: the online resource for enterprise risk management</subfield>
      <subfield code="g">16 September 2025 ; 1 p.</subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="u">https://www.insuranceerm.com/news-comment/ai-could-transform-catastrophe-modelling-of-secondary-perils.html</subfield>
    </datafield>
  </record>
</collection>