MAP20250016613Montejano Mariscal, JorgeMás allá de las cajas negras : algoritmos interpretables de aprendizaje automático en la práctica actuarial / Jorge Montejano Mariscal. — Madrid : Universidad Carlos III de Madrid, 202562 p.Trabajo Fin de Master del Master en Ciencias Actuariales y Financieras de la Escuela de Postgrado de la Universidad Carlos III de Madrid. Tutora: Raquel Pérez Calderón. Promoción 2023-20251. Introducción -- 1.1. Interpretabilidad en el aprendizaje automático -- 1.2. Motivación y objetivos del trabajo -- 2. Metodología y marco teórico -- 2.1. Modelo inicial (GLM) -- 2.2. Modelos de aprendizaje automático (black-box) -- 2.2.1. Random forest -- 2.2.2. Redes neuronales -- 2.3. Interpretabilidad y aprendizaje automático -- 2.4. Métodos de interpretabilidad sobre el modelo (post-hoc) -- 2.4.1. Métodos modelo-agnósticos globales -- 2.4.1.1. Importancia de las variables -- 2.4.1.2. PDP -- 2.4.2. Métodos modelo-agnósticos locales -- 2.4.2.1. LIME -- 2.4.2.2. SHAP -- 2.4.3. Modelo sustituto -- 2.5. Modelos inherentemente interpretativos (by-design) -- 2.5.1. EBM -- 2.5.2. NAM -- 2.5.3. RuleFit -- 3. Base de datos -- 3.1. Descripción y obtención -- 3.2. Análisis exploratorio de los datos -- 4. Resultados -- 4.1. GLM -- 4.1.1. Métricas -- 4.1.2. Comportamiento global -- 4.1.3. Comportamiento local -- 4.2. Random forest -- 4.2.1. Métricas -- 4.2.2. Comportamiento global -- 4.2.3. Comportamiento local -- 4.2.3.1. LIME -- 4.2.3.2. SHAP -- 4.3. DNN -- 4.3.1. Métricas -- 4.3.2. Comportamiento global -- 4.3.3. Comportamiento local modelo sustituto -- 4.4. EBM -- 4.4.1. Métricas -- 4.4.2. Comportamiento global -- 4.4.3. Comportamiento local -- 4.5. NAM -- 4.5.1. Métricas -- 4.5.2. Comportamiento global -- 4.5.3. Comportamiento local -- 4.6. RuleFit -- 4.6.1. Métricas -- 4.6.2. Comportamiento global -- 4.6.3. Comportamiento local -- 5. Comparativa modelos -- 5.1. Principales métricas -- 5.2. Predicción promedio versus observada por variable -- 5.3. Contribución por variable y estimaciones locales -- 5.5. Balance de la comparativa -- 6. Conclusiones -- Bibliografía. — Sumario: Este trabajo analiza la creciente necesidad de interpretabilidad en modelos de aprendizaje automático aplicados al sector asegurador, comparando algoritmos caja-negra con modelos interpretativos tanto post-hoc como por diseño. A través de una aplicación práctica en Python con datos reales del ramo de autos, se evalúa la capacidad predictiva y explicativa de modelos como GLM, Random Forest, redes neuronales profundas, EBM, NAM y RuleFit. Los resultados muestran que los modelos interpretativos alcanzan un rendimiento competitivo y ofrecen explicaciones claras que favorecen la confianza, la adopción y la toma de decisiones informadas. Se concluye que, en contextos regulados como el asegurador, los modelos interpretativos no solo son viables, sino preferibles, y se recomienda su uso según las necesidades específicas de flexibilidad, simplicidad o robustezLa copia digital se distribuye bajo licencia "Attribution 4.0 International (CC BY NC 4.0)". CC BY NC 4.0 - https://creativecommons.org/licenses/by-nc/4.01. Automatización. 2. Redes neuronales artificiales. 3. Modelos de simulación. 4. Análisis de multivariables. 5. Estudios comparativos. 6. Modelos actuariales. 7. Seguro de automóviles. 8. Modelización. 9. Machine learning. I. Pérez Calderón, Raquel. II. Universidad Carlos III de Madrid. III. Trabajos Fin de Master/de Grado/Tesis doctorales. IV. Título.