Pesquisa de referências

Pareto tail index estimation revisited

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000nab a2200000 i 4500</leader>
    <controlfield tag="001">MAP20071507860</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20080418125702.0</controlfield>
    <controlfield tag="007">hzruuu---uuuu</controlfield>
    <controlfield tag="008">060403e20060101usa||||    | |00010|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20080191603</subfield>
      <subfield code="a">Finkelstein, Mark</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Pareto tail index estimation revisited</subfield>
      <subfield code="c">Mark Finkelstein, Howard G. Tucker and Jerry Alan Veeh</subfield>
    </datafield>
    <datafield tag="520" ind1="8" ind2=" ">
      <subfield code="a">An estimator of the tail index of a Pareto distribution is given that is based on the use of the probability integral transform. This new estimator provides performance that is comparable to the best robust estimators, while retaining conceptual and computational simplicity. A tuning parameter in the new estimator can be adjusted to control the tradeoff between robustness and efficiency. The method used to compute the estimator also can be used to find a confidence interval for the tail index that is guaranteed to have the nominal confidence level for any given sample size. Guidelines for the use of the new estimator are provided</subfield>
    </datafield>
    <datafield tag="650" ind1="0" ind2="1">
      <subfield code="0">MAPA20080558215</subfield>
      <subfield code="a">Estadística</subfield>
    </datafield>
    <datafield tag="650" ind1="0" ind2="1">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="650" ind1="1" ind2="1">
      <subfield code="0">MAPA20080591953</subfield>
      <subfield code="a">Métodos actuariales</subfield>
    </datafield>
    <datafield tag="650" ind1="1" ind2="1">
      <subfield code="0">MAPA20080602444</subfield>
      <subfield code="a">Matemática financiera</subfield>
    </datafield>
    <datafield tag="650" ind1="1" ind2="1">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1="1" ind2="1">
      <subfield code="0">MAPA20080611613</subfield>
      <subfield code="a">Modelos probabílisticos</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20080208943</subfield>
      <subfield code="a">Tucker, Howard G.</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20080181673</subfield>
      <subfield code="a">Veeh, Jerry Alan</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="d">Schaumburg, Illinois</subfield>
      <subfield code="g">Vol. 10, nº 1, January 2006 ; p. 1-10</subfield>
      <subfield code="t">North American Actuarial Journal</subfield>
    </datafield>
  </record>
</collection>