Logistic regression for insured mortality experience studies
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20160004946</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20160226143848.0</controlfield>
<controlfield tag="008">160218e20151201esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">341</subfield>
</datafield>
<datafield tag="245" ind1="0" ind2="0">
<subfield code="a">Logistic regression for insured mortality experience studies</subfield>
<subfield code="c">Zhiwei Zhu...[et al.]</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Properly adapted statistical modeling methodology can be a powerful tool for coping with a broad range of challenges related to life and annuity insurance industries' experience studies. In this article, we present a logistic regression model based on U.S. insured mortality experience study with a focus on gaining study efficiency and effectiveness by addressing multiple analytical predicaments within one statistical modeling framework. These predicaments include but are not limited to testing statistical significances or credibility of potential mortality drivers, estimation of normalized mortality, slopes, and differentials, quantification of study reliability, and extrapolation for under-experienced mortality, smoothing between select and ultimate estimations, and development of basic experience tables. </subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080597733</subfield>
<subfield code="a">Modelos estadísticos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080570590</subfield>
<subfield code="a">Seguro de vida</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080555306</subfield>
<subfield code="a">Mortalidad</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080601508</subfield>
<subfield code="a">Estudios estadísticos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="651" ind1=" " ind2="1">
<subfield code="0">MAPA20080638337</subfield>
<subfield code="a">Estados Unidos</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20160002720</subfield>
<subfield code="a">Zhu, Zhiwei</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000239</subfield>
<subfield code="t">North American actuarial journal</subfield>
<subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
<subfield code="x">1092-0277</subfield>
<subfield code="g">01/12/2015 Tomo 19 Número 4 - 2015 , p. 241-255</subfield>
</datafield>
</record>
</collection>