Logistic regression for insured mortality experience studies
Contenido multimedia no disponible por derechos de autor o por acceso restringido. Contacte con la institución para más información.
Tag | 1 | 2 | Valor |
---|---|---|---|
LDR | 00000cab a2200000 4500 | ||
001 | MAP20160004946 | ||
003 | MAP | ||
005 | 20160226143848.0 | ||
008 | 160218e20151201esp|||p |0|||b|spa d | ||
040 | $aMAP$bspa$dMAP | ||
084 | $a341 | ||
245 | 0 | 0 | $aLogistic regression for insured mortality experience studies$cZhiwei Zhu...[et al.] |
520 | $aProperly adapted statistical modeling methodology can be a powerful tool for coping with a broad range of challenges related to life and annuity insurance industries' experience studies. In this article, we present a logistic regression model based on U.S. insured mortality experience study with a focus on gaining study efficiency and effectiveness by addressing multiple analytical predicaments within one statistical modeling framework. These predicaments include but are not limited to testing statistical significances or credibility of potential mortality drivers, estimation of normalized mortality, slopes, and differentials, quantification of study reliability, and extrapolation for under-experienced mortality, smoothing between select and ultimate estimations, and development of basic experience tables. | ||
650 | 4 | $0MAPA20080597733$aModelos estadísticos | |
650 | 4 | $0MAPA20080570590$aSeguro de vida | |
650 | 4 | $0MAPA20080555306$aMortalidad | |
650 | 4 | $0MAPA20080601508$aEstudios estadísticos | |
650 | 4 | $0MAPA20080579258$aCálculo actuarial | |
651 | 1 | $0MAPA20080638337$aEstados Unidos | |
700 | 1 | $0MAPA20160002720$aZhu, Zhiwei | |
773 | 0 | $wMAP20077000239$tNorth American actuarial journal$dSchaumburg : Society of Actuaries, 1997-$x1092-0277$g01/12/2015 Tomo 19 Número 4 - 2015 , p. 241-255 |