Dynamic frailty count process in insurance : a unified framework for estimation, pricing and forecasting
Contenido multimedia no disponible por derechos de autor o por acceso restringido. Contacte con la institución para más información.
Tag | 1 | 2 | Valor |
---|---|---|---|
LDR | 00000cab a2200000 4500 | ||
001 | MAP20190000680 | ||
003 | MAP | ||
005 | 20190111142724.0 | ||
008 | 190108e20181203esp|||p |0|||b|spa d | ||
040 | $aMAP$bspa$dMAP | ||
084 | $a7 | ||
100 | $0MAPA20170007913$aLu, Yang | ||
245 | 1 | 0 | $aDynamic frailty count process in insurance$b: a unified framework for estimation, pricing and forecasting$cYang Lu |
520 | $aWe study count processes in insurance, in which the underlying risk factor is time varying and unobservable. The factor follows an autoregressive gamma process, and the resulting model generalizes the static Poisson-Gamma model and allows for closed form expression for the posterior Bayes (linear or nonlinear) premium. Moreover, the estimation and forecasting can be conducted within the same framework in a rather efficient way. An example of automobile insurance pricing illustrates the ability of the model to capture the duration dependent, nonlinear impact of past claims on future ones and the improvement of the Bayes pricing method compared to the linear credibility approach | ||
650 | 4 | $0MAPA20080591182$aGerencia de riesgos | |
650 | 4 | $0MAPA20080592059$aModelos predictivos | |
650 | 4 | $0MAPA20080618827$aAdministración de empresas | |
650 | 4 | $0MAPA20080590567$aEmpresas de seguros | |
650 | 4 | $0MAPA20080602437$aMatemática del seguro | |
650 | 4 | $0MAPA20080657963$aProcesos de medición | |
773 | 0 | $wMAP20077000727$tThe Journal of risk and insurance$dNueva York : The American Risk and Insurance Association, 1964-$x0022-4367$g03/12/2018 Volumen 85 Número 4 - diciembre 2018 , p. 1083-1102 |