Search

Unsupervised Machine Learning for Bot Detection on Twitter : Generating and Selecting Features for Accurate Clustering

Acceso al documento/Access the document
MARC record
Tag12Value
LDR  00000cab a2200000 4500
001  MAP20240013288
003  MAP
005  20240829122056.0
008  240829e20240619esp|||p |0|||b|eng d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎922.13
1001 ‎$0‎MAPA20220004824‎$a‎Al-azawi, Raad
24510‎$a‎Unsupervised Machine Learning for Bot Detection on Twitter‎$b‎: Generating and Selecting Features for Accurate Clustering‎$c‎by Raad Al-azawi and Safaa O. AL-mamory
520  ‎$a‎Twitter is a popular social media platform that is widely used by individuals and businesses. However, it is vulnerable to bot attacks, which can have negative effects on society. Supervised machine learning techniques can detect bots but require labeled data to differentiate between human and bot users. Twitter generates a significant amount of unlabeled data, which can be expensive to label. Unsupervised machine learning techniques, specifically clustering algorithms, are crucial for managing this data and reducing computational complexity
650 4‎$0‎MAPA20080570286‎$a‎Redes sociales
650 4‎$0‎MAPA20080553128‎$a‎Algoritmos
650 4‎$0‎MAPA20140023066‎$a‎Ciberataques
650 4‎$0‎MAPA20080542245‎$a‎Robots
650 4‎$0‎MAPA20080611200‎$a‎Inteligencia artificial
7730 ‎$w‎MAP20200034445‎$g‎19/06/2024 Volumen 27 Número 73 - junio 2024 , p.142-148‎$x‎1988-3064‎$t‎Revista Iberoamericana de Inteligencia Artificial‎$d‎ : IBERAMIA, Sociedad Iberoamericana de Inteligencia Artificial , 2018-
856  ‎$u‎https://journal.iberamia.org/index.php/intartif/article/view/1119