Search

Unsupervised Machine Learning for Bot Detection on Twitter : Generating and Selecting Features for Accurate Clustering

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<rdf:Description>
<dc:creator>Al-azawi, Raad</dc:creator>
<dc:date>2024-06-19</dc:date>
<dc:description xml:lang="es">Sumario: Twitter is a popular social media platform that is widely used by individuals and businesses. However, it is vulnerable to bot attacks, which can have negative effects on society. Supervised machine learning techniques can detect bots but require labeled data to differentiate between human and bot users. Twitter generates a significant amount of unlabeled data, which can be expensive to label. Unsupervised machine learning techniques, specifically clustering algorithms, are crucial for managing this data and reducing computational complexity</dc:description>
<dc:identifier>https://documentacion.fundacionmapfre.org/documentacion/publico/es/bib/186114.do</dc:identifier>
<dc:language>eng</dc:language>
<dc:rights xml:lang="es">InC - http://rightsstatements.org/vocab/InC/1.0/</dc:rights>
<dc:subject xml:lang="es">Redes sociales</dc:subject>
<dc:subject xml:lang="es">Algoritmos</dc:subject>
<dc:subject xml:lang="es">Ciberataques</dc:subject>
<dc:subject xml:lang="es">Robots</dc:subject>
<dc:subject xml:lang="es">Inteligencia artificial</dc:subject>
<dc:type xml:lang="es">Artículos y capítulos</dc:type>
<dc:title xml:lang="es">Unsupervised Machine Learning for Bot Detection on Twitter : Generating and Selecting Features for Accurate Clustering</dc:title>
<dc:relation xml:lang="es">En: Revista Iberoamericana de Inteligencia Artificial. -  : IBERAMIA, Sociedad Iberoamericana de Inteligencia Artificial , 2018- = ISSN 1988-3064. - 19/06/2024 Volumen 27 Número 73 - junio 2024 , p.142-148</dc:relation>
</rdf:Description>
</rdf:RDF>