Behavioral optimal insurance
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20110070564</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20111214123017.0</controlfield>
<controlfield tag="008">111202e20111101esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Behavioral optimal insurance</subfield>
<subfield code="c">K.C.J. Sung... [et al.]</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">The present work studies the optimal insurance policy offered by an insurer adopting a proportional premium principice to an insured whose decision-making behavior is modeled by Kahneman and Tversky's Cumulative Prospect Theory with convex probability distortions. We show that, under a fixed premium rate, the optimal insurance policy is a generalized insurance layer (that is, either an insurance layer or a stop-loss insurance). This optimal insurance decision problem is resolved by first converting it into three different sub-problems similar to those in jin and Zhou (2008); however, as we now demand a more regular optimal solution, a completely different approach has been developed to tackle them. When the premium is regarded as a decision variable and there is no risk loading, the optimal indemnity schedule in this form has no deductibles but a cap; further results also suggests that the deductible amount will be reduced if the risk loading is decreased. As a whole, our paper provides a theoretical explanation for the popularity of limited coverage insurance policies in the market as observed by many socio-economists, which serves as a mathematical bridge between behavioral finance and actuarial science. </subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080602437</subfield>
<subfield code="a">Matemática del seguro</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080545017</subfield>
<subfield code="a">Pólizas</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20080582975</subfield>
<subfield code="a">Teoría matemática</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20090041776</subfield>
<subfield code="a">Análisis actuarial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="0">MAPA20090039629</subfield>
<subfield code="a">Riesgo actuarial</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20110031916</subfield>
<subfield code="a">Sung, K.C.J.</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077100574</subfield>
<subfield code="t">Insurance : mathematics and economics</subfield>
<subfield code="d">Oxford : Elsevier, 1990-</subfield>
<subfield code="x">0167-6687</subfield>
<subfield code="g">01/11/2011 Tomo 49 Número 3 - 2011 , p. 418-428</subfield>
</datafield>
</record>
</collection>