Pricing mortality securities with correlated mortality indexes

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20140003549</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20140206114815.0</controlfield>
<controlfield tag="008">140127e20131202esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20080014094</subfield>
<subfield code="a">Lin, Yijia</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Pricing mortality securities with correlated mortality indexes</subfield>
<subfield code="c">Yijia Lin, Sheen Liu, Jifeng Yu</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">This article proposes a stochastic model, which captures mortality correlations across countries and common mortality shocks, for analyzing catastrophe mortality contingent claims. To estimate our model, we apply particle filtering, a general technique that has wide applications in non-Gaussian and multivariate jump-diffusion models and models with nonanalytic observation equations. In addition, we illustrate how to price mortality securities with normalized multivariate exponential titling based on the estimated mortality correlations and jump parameters. Our results show the significance of modeling mortality correlations and transient jumps in mortality security pricing.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080555306</subfield>
<subfield code="a">Mortalidad</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080602437</subfield>
<subfield code="a">Matemática del seguro</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080574079</subfield>
<subfield code="a">Tasa del riesgo</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080592011</subfield>
<subfield code="a">Modelos actuariales</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080564322</subfield>
<subfield code="a">Tarificación</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20140001873</subfield>
<subfield code="a">Liu, Sheen</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20120016477</subfield>
<subfield code="a">Yu, Jifeng</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000727</subfield>
<subfield code="t">The Journal of risk and insurance</subfield>
<subfield code="d">Nueva York : The American Risk and Insurance Association, 1964-</subfield>
<subfield code="x">0022-4367</subfield>
<subfield code="g">02/12/2013 Volumen 80 Número 4 - diciembre 2013 , p. 921-948</subfield>
</datafield>
</record>
</collection>