Consumption, investment and life insurance strategies with heterogeneous discounting
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20140006731</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20140326114250.0</controlfield>
<controlfield tag="008">140220e20140113esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="245" ind1="0" ind2="0">
<subfield code="a">Consumption, investment and life insurance strategies with heterogeneous discounting</subfield>
<subfield code="c">Albert de-Paz...[et.al]</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">In this paper we analyze how the optimal consumption, investment and life insurance rules are modified by the introduction of a class of time-inconsistent preferences. In particular, we account for the fact that an agent's preferences evolve along the planning horizon according to her increasing concern about the bequest left to her descendants and about her welfare at retirement. To this end, we consider a stochastic continuous time model with random terminal time for an agent with a known distribution of lifetime under heterogeneous discounting. In order to obtain the time-consistent solution, we solve a non-standard dynamic programming equation. For the case of CRRA and CARA utility functions we compare the explicit solutions for the time-inconsistent and the time-consistent agent. The results are illustrated numerically</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080570590</subfield>
<subfield code="a">Seguro de vida</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080592042</subfield>
<subfield code="a">Modelos matemáticos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080602437</subfield>
<subfield code="a">Matemática del seguro</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20140005789</subfield>
<subfield code="a">Paz, Albert de</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077100574</subfield>
<subfield code="t">Insurance : mathematics and economics</subfield>
<subfield code="d">Oxford : Elsevier, 1990-</subfield>
<subfield code="x">0167-6687</subfield>
<subfield code="g">13/01/2014 Volumen 54 Número 1 - enero 2014 , p. 66-75</subfield>
</datafield>
</record>
</collection>