Hedging of unit-linked life insurance contracts with unobservable mortality hazard rate via local risk-minimization
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20150006271</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20150212144723.0</controlfield>
<controlfield tag="008">150209e20150112esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="0">MAPA20140007615</subfield>
<subfield code="a">Ceci, Claudia</subfield>
</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Hedging of unit-linked life insurance contracts with unobservable mortality hazard rate via local risk-minimization</subfield>
<subfield code="c">Claudia Cecia, Katia Colaneria, Alessandra Cretarolab</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">In this paper we investigate the local risk-minimization approach for a combined financial-insurance model where there are restrictions on the information available to the insurance company. In particular we assume that, at any time, the insurance company may observe the number of deaths from a specific portfolio of insured individuals but not the mortality hazard rate. We consider a financial market driven by a general semimartingale and we aim to hedge unit-linked life insurance contracts via the local risk-minimization approach under partial information. The FöllmerSchweizer decomposition of the insurance claim and explicit formulas for the optimal strategy for pure endowment and term insurance contracts are provided in terms of the projection of the survival process on the information flow. Moreover, in a Markovian framework, this leads to a filtering problem with point process observations</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080602437</subfield>
<subfield code="a">Matemática del seguro</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080555306</subfield>
<subfield code="a">Mortalidad</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080611569</subfield>
<subfield code="a">Minimización de riesgos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080586294</subfield>
<subfield code="a">Mercado de seguros</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20150006707</subfield>
<subfield code="a">Colaneria, Katia</subfield>
</datafield>
<datafield tag="700" ind1="1" ind2=" ">
<subfield code="0">MAPA20150006714</subfield>
<subfield code="a">Cretarolab, Alessandra</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077100574</subfield>
<subfield code="t">Insurance : mathematics and economics</subfield>
<subfield code="d">Oxford : Elsevier, 1990-</subfield>
<subfield code="x">0167-6687</subfield>
<subfield code="g">12/01/2015 Volumen 60 Número - enero 2015 , p. 47-60</subfield>
</datafield>
</record>
</collection>