Búsqueda

On some compound distributions with Borel summands

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<rdf:Description>
<dc:creator>Finner, H.</dc:creator>
<dc:date>2015-05-04</dc:date>
<dc:description xml:lang="es">Sumario: The generalized Poisson distribution is well known to be a compound Poisson distribution with Borel summands. As a generalization we present closed formulas for compound Bartlett and Delaporte distributions with Borel summands and a recursive structure for certain compound shifted Delaporte mixtures with Borel summands. Our models are introduced in an actuarial context as claim number distributions and are derived only with probabilistic arguments and elementary combinatorial identities. In the actuarial context related compound distributions are of importance as models for the total size of insurance claims for which we present simple recursion formulas of Panjer type.</dc:description>
<dc:identifier>https://documentacion.fundacionmapfre.org/documentacion/publico/es/bib/152964.do</dc:identifier>
<dc:language>spa</dc:language>
<dc:rights xml:lang="es">InC - http://rightsstatements.org/vocab/InC/1.0/</dc:rights>
<dc:type xml:lang="es">Artículos y capítulos</dc:type>
<dc:title xml:lang="es">On some compound distributions with Borel summands</dc:title>
<dc:relation xml:lang="es">En: Insurance : mathematics and economics. - Oxford : Elsevier, 1990- = ISSN 0167-6687. - 04/05/2015 Volumen 62 - mayo 2015 </dc:relation>
</rdf:Description>
</rdf:RDF>