Mean-variance asset liability management with state-dependent risk aversion
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
<record>
<leader>00000cab a2200000 4500</leader>
<controlfield tag="001">MAP20170014454</controlfield>
<controlfield tag="003">MAP</controlfield>
<controlfield tag="005">20170517163300.0</controlfield>
<controlfield tag="008">170511e20170301esp|||p |0|||b|spa d</controlfield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">MAP</subfield>
<subfield code="b">spa</subfield>
<subfield code="d">MAP</subfield>
</datafield>
<datafield tag="084" ind1=" " ind2=" ">
<subfield code="a">6</subfield>
</datafield>
<datafield tag="245" ind1="0" ind2="0">
<subfield code="a">Mean-variance asset liability management with state-dependent risk aversion</subfield>
<subfield code="c">Yan Zhang... [et al.]</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">This article investigates the asset liability management problem with state-dependent risk aversion under the mean-variance criterion.
The investor allocates the wealth among multiple assets including a risk-free asset and multiple risky assets governed by a system
of geometric Brownian motion stochastic differential equations, and the investor faces the risk of paying uncontrollable random liabilities.
The state-dependent risk aversion is taken into account in our model, linking the risk aversion to the current wealth held by the
investor. An extended Hamilton-Jacobi-Bellman system is established for the optimization of asset liability management, and by solving
the extended Hamilton-Jacobi-Bellman system, the analytical closed-form expressions for the time-inconsistent optimal investment
strategies and the optimal value function are derived. Finally, numerical examples are presented to illustrate our results.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080588953</subfield>
<subfield code="a">Análisis de riesgos</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080579258</subfield>
<subfield code="a">Cálculo actuarial</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="4">
<subfield code="0">MAPA20080602437</subfield>
<subfield code="a">Matemática del seguro</subfield>
</datafield>
<datafield tag="773" ind1="0" ind2=" ">
<subfield code="w">MAP20077000239</subfield>
<subfield code="t">North American actuarial journal</subfield>
<subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
<subfield code="x">1092-0277</subfield>
<subfield code="g">01/03/2017 Tomo 21 Número 1 - 2017 , p. 87-106</subfield>
</datafield>
</record>
</collection>