Búsqueda

Actuarial risk matrices : the nearest positive semidefinite matrix problem

Recurso electrónico / Electronic resource
Registro MARC
Tag12Valor
LDR  00000cab a2200000 4500
001  MAP20180003967
003  MAP
005  20180213171040.0
008  180207e20171204esp|||p |0|||b|spa d
040  ‎$a‎MAP‎$b‎spa‎$d‎MAP
084  ‎$a‎6
100  ‎$0‎MAPA20180001291‎$a‎Cutajar, Stefan
24510‎$a‎Actuarial risk matrices‎$b‎: the nearest positive semidefinite matrix problem‎$c‎Stefan Cutajar, Helena Smigoc, Adrian O'Hagan
520  ‎$a‎The manner in which a group of insurance risks are interrelated is commonly presented via a correlation matrix. Actuarial risk correlation matrices are often constructed using output from disparate modeling sources and can be subjectively adjusted, for example, increasing the estimated correlation between two risk sources to confer reserving prudence. Hence, while individual elements still obey the assumptions of correlation values, the overall matrix is often not mathematically valid (not positive semidefinite). This can prove problematic in using the matrix in statistical models. The first objective of this article is to review existing techniques that address the nearest positive semidefinite matrix problem in a very general setting. The chief approaches studied are Semidefinite Programming (SDP) and the Alternating Projections Method (APM).
650 4‎$0‎MAPA20080602437‎$a‎Matemática del seguro
650 4‎$0‎MAPA20080579258‎$a‎Cálculo actuarial
7001 ‎$0‎MAPA20180001499‎$a‎Smigoc, Helena
700  ‎$0‎MAPA20170005438‎$a‎O'Hagan, Adrían
7730 ‎$w‎MAP20077000239‎$t‎North American actuarial journal‎$d‎Schaumburg : Society of Actuaries, 1997-‎$x‎1092-0277‎$g‎04/12/2017 Tomo 21 Número 4 - 2017 , p. 552-564