Data clustering with actuarial applications

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20200018070</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20200602122800.0</controlfield>
    <controlfield tag="008">200528e20200526usa|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20140000234</subfield>
      <subfield code="a">Gan, Guojun</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Data clustering with actuarial applications</subfield>
      <subfield code="c">Guojun Gan, Emiliano A. Valdez</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">Data clustering refers to the process of dividing a set of objects into homogeneous groups or clusters such that the objects in each cluster are more similar to each other than to those of other clusters. As one of the most popular tools for exploratory data analysis, data clustering has been applied in many scientific areas. In this article, we give a review of the basics of data clustering, such as distance measures and cluster validity, and different types of clustering algorithms. We also demonstrate the applications of data clustering in insurance by using two scalable clustering algorithms, the truncated fuzzy c-means (TFCM) algorithm and the hierarchical k-means algorithm, to select representative variable annuity contracts, which are used to build predictive models. We found that the hierarchical k-means algorithm is efficient and produces high-quality representative variable annuity contracts.</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080578848</subfield>
      <subfield code="a">Análisis de datos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080553128</subfield>
      <subfield code="a">Algoritmos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080592059</subfield>
      <subfield code="a">Modelos predictivos</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080579258</subfield>
      <subfield code="a">Cálculo actuarial</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20080648428</subfield>
      <subfield code="a">Valdez, Emiliano A.</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="t">North American actuarial journal</subfield>
      <subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
      <subfield code="x">1092-0277</subfield>
      <subfield code="g">01/06/2020 Tomo 24 Número 2 - 2020 , p. 168-186</subfield>
    </datafield>
  </record>
</collection>