Design of small photovoltaic power generation system based on maximum power point tracking

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="" xmlns:xsi="" xsi:schemaLocation="">
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20200037255</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20210429141006.0</controlfield>
    <controlfield tag="008">201123e20201201esp|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">922.134</subfield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Design of small photovoltaic power generation system based on maximum power point tracking</subfield>
      <subfield code="c">Yang Cui...[Et al.]</subfield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">According to the nonlinear output characteristics of photovoltaic cells, combined with artificial intelligence algorithmthe the MPPTiMaximum Power Point Trackingjcontrol algorithm based on fuzzy variable step size is proposed, which enables the system to quickly track the maximum power point and improve the energy conversion efficiency of photovoltaic system.This paper designs a small-scale photovoltaic power generation system. The main circuit of the system consists of Perovskite Solar Panels, DC voltage regulator circuit, storage battery and one-way full bridge inverter circuit. The control circuit consists of sun-seeking, inverter and maximum power tracking on constant voltage. Proteus simulation software is used to simulate the sun-seeking part, the inverting part, the general control unit, the keys and the display interface. The results indicate that the functions of the small-scale photovoltaic power generation system can be achieved very well.</subfield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20110002916</subfield>
      <subfield code="a">Energía fotovoltaica</subfield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080553128</subfield>
      <subfield code="a">Algoritmos</subfield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080611200</subfield>
      <subfield code="a">Inteligencia artificial</subfield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20120007840</subfield>
      <subfield code="a">Paneles solares</subfield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20200023005</subfield>
      <subfield code="a">Cui, Yang </subfield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20200034445</subfield>
      <subfield code="t">Revista Iberoamericana de Inteligencia Artificial</subfield>
      <subfield code="d">IBERAMIA, Sociedad Iberoamericana de Inteligencia Artificial , 2018-</subfield>
      <subfield code="x">1988-3064</subfield>
      <subfield code="g">31/12/2020 Volumen 23 Número 66 - diciembre 2020 , p. 26-35</subfield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="q">application/pdf</subfield>
      <subfield code="w">1108790</subfield>
      <subfield code="y">Recurso electrónico / Electronic resource</subfield>