Stochastic loss reserving : a new perspective from a Dirichlet model

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<rdf:RDF xmlns:rdf="" xmlns:dc="" xmlns:xsi="">
<dc:creator>Sriram, Karthik </dc:creator>
<dc:creator>Shi, Peng</dc:creator>
<dc:description xml:lang="es">Sumario: Forecasting the outstanding claim liabilities to set adequate reserves is critical for a nonlife insurer's solvency. ChainLadder and BornhuetterFerguson are two prominent actuarial approaches used for this task. The selection between the two approaches is often ad hoc due to different underlying assumptions. We introduce a Dirichlet model that provides a common statistical framework for the two approaches, with some appealing properties. Depending on the type of information available, the model inference naturally leads to either ChainLadder or BornhuetterFerguson prediction. Using claims data on Worker's compensation insurance from several U.S. insurers, we discuss both frequentist and Bayesian inference.</dc:description>
<dc:rights xml:lang="es">In Copyright (InC) -</dc:rights>
<dc:subject xml:lang="es">Modelo estocástico</dc:subject>
<dc:subject xml:lang="es">Empresas de seguros</dc:subject>
<dc:subject xml:lang="es">Seguros no vida</dc:subject>
<dc:subject xml:lang="es">Reclamaciones</dc:subject>
<dc:type xml:lang="es">Artículos y capítulos</dc:type>
<dc:title xml:lang="es">Stochastic loss reserving : a new perspective from a Dirichlet model</dc:title>
<dc:relation xml:lang="es">En: The Journal of risk and insurance. - Nueva York : The American Risk and Insurance Association, 1964- = ISSN 0022-4367. - 01/03/2021 Volumen 88 Número 1 - marzo 2021 , p. 195-230</dc:relation>