Tail Moments of Compound Distributions

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<dc:creator>Ren, Jiandong</dc:creator>
<dc:description xml:lang="es">Sumario: In this article, we study the moment transform of both univariate and multivariate compound sums. We first derive simple explicit formulas for the first and second moment transforms when the (loss) frequency distribution is in the so-called (a,b,0) class. Then we show that the derived formulas can be used to efficiently compute risk measures such as the tail conditional expectation (TCE), the tail variance (TV), and higher tail moments. The results generalize those in Denuit (North American Actuarial Journal, 24 (4):51232, 2020).</dc:description>
<dc:rights xml:lang="es">InC - http://rightsstatements.org/vocab/InC/1.0/</dc:rights>
<dc:subject xml:lang="es">Cálculo actuarial</dc:subject>
<dc:subject xml:lang="es">Variables macro-económicas</dc:subject>
<dc:type xml:lang="es">Artículos y capítulos</dc:type>
<dc:title xml:lang="es">Tail Moments of Compound Distributions</dc:title>
<dc:relation xml:lang="es">En: North American actuarial journal. - Schaumburg : Society of Actuaries, 1997- = ISSN 1092-0277. - 12/09/2022 Tomo 26 Número 3 - 2022 , p. 336-350</dc:relation>