Búsqueda

Investigating the Impact of Curriculum Learning on Reinforcement Learning for Improved Navigational Capabilities in Mobile Robots

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20240013325</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20240829121917.0</controlfield>
    <controlfield tag="008">240829e20240619esp|||p      |0|||b|eng d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">922.134</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20240020903</subfield>
      <subfield code="a">Iskandar, Alaa</subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Investigating the Impact of Curriculum Learning on Reinforcement Learning for Improved Navigational Capabilities in Mobile Robots</subfield>
      <subfield code="c">Alaa Iskandar, Béla Kovács</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">This paper proposes a method for finding the shortest path of a mobile robot using deep reinforcement learning with utilizing Proximal policy optimization algorithm (PPO) enhanced with curriculum learning. By modelling the environment in 3D space using the Webots simulator, we extend the PPO algorithm's capabilities to handle continuous states from 8 IR sensors and control the velocities of two motors of E-puck robot</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080611200</subfield>
      <subfield code="a">Inteligencia artificial</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080542245</subfield>
      <subfield code="a">Robots</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080594589</subfield>
      <subfield code="a">Análisis comparativo</subfield>
    </datafield>
    <datafield tag="700" ind1="1" ind2=" ">
      <subfield code="0">MAPA20240020910</subfield>
      <subfield code="a">Kovács, Béla </subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20200034445</subfield>
      <subfield code="g">19/06/2024 Volumen 27 Número 73 - junio 2024 , p. 163-176</subfield>
      <subfield code="x">1988-3064</subfield>
      <subfield code="t">Revista Iberoamericana de Inteligencia Artificial</subfield>
      <subfield code="d"> : IBERAMIA, Sociedad Iberoamericana de Inteligencia Artificial , 2018-</subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="u">https://journal.iberamia.org/index.php/intartif/article/view/974</subfield>
    </datafield>
  </record>
</collection>