Búsqueda

Isotonic Regression for Variance Estimation and Its Role in Mean Estimation and Model Validation

<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.loc.gov/MARC21/slim http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd">
  <record>
    <leader>00000cab a2200000   4500</leader>
    <controlfield tag="001">MAP20250016316</controlfield>
    <controlfield tag="003">MAP</controlfield>
    <controlfield tag="005">20251010110104.0</controlfield>
    <controlfield tag="008">251010e20250929esp|||p      |0|||b|spa d</controlfield>
    <datafield tag="040" ind1=" " ind2=" ">
      <subfield code="a">MAP</subfield>
      <subfield code="b">spa</subfield>
      <subfield code="d">MAP</subfield>
    </datafield>
    <datafield tag="084" ind1=" " ind2=" ">
      <subfield code="a">6</subfield>
    </datafield>
    <datafield tag="100" ind1="1" ind2=" ">
      <subfield code="0">MAPA20250004627</subfield>
      <subfield code="a">Delong, Tukasz </subfield>
    </datafield>
    <datafield tag="245" ind1="1" ind2="0">
      <subfield code="a">Isotonic Regression for Variance Estimation and Its Role in Mean Estimation and Model Validation</subfield>
      <subfield code="c">Tukasz Delong and Mario V. Wüthrich</subfield>
    </datafield>
    <datafield tag="300" ind1=" " ind2=" ">
      <subfield code="a">30 p.</subfield>
    </datafield>
    <datafield tag="520" ind1=" " ind2=" ">
      <subfield code="a">We study isotonic regression which is a nonparametric rank-preserving regression technique. Under the assumption that the variance function of a response is monotone in its mean functional, we investigate a novel application of isotonic regression as an estimator of this variance function. Our proposal of variance estimation with isotonic regression is used in multiple classical regression problems focused on mean estimation and model validation. In a series of numerical examples, we (1) explore the power variance parameter of the variance function within Tweedie's family of distributions, (2) derive a semi-parametric bootstrap under heteroscedasticity, (3) provide a test for auto calibration, (4) explore a quasi-likelihood approach to benefit from best-asymptotic estimation, and (5) deal with several difficulties under Lognormal assumptions. In all of these problems we verify that the variance estimation with isotonic regression is essential for proper mean estimation and beneficial compared to traditional statistical techniques based on local polynomial smoothers</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080602437</subfield>
      <subfield code="a">Matemática del seguro</subfield>
    </datafield>
    <datafield tag="650" ind1=" " ind2="4">
      <subfield code="0">MAPA20080627904</subfield>
      <subfield code="a">Ciencias Actuariales y Financieras</subfield>
    </datafield>
    <datafield tag="700" ind1=" " ind2=" ">
      <subfield code="0">MAPA20100046395</subfield>
      <subfield code="a">Wüthrich, Mario V.</subfield>
    </datafield>
    <datafield tag="773" ind1="0" ind2=" ">
      <subfield code="w">MAP20077000239</subfield>
      <subfield code="g">29/09/2025 Volume 29 Number 3 - 2025 </subfield>
      <subfield code="x">1092-0277</subfield>
      <subfield code="t">North American actuarial journal</subfield>
      <subfield code="d">Schaumburg : Society of Actuaries, 1997-</subfield>
    </datafield>
    <datafield tag="856" ind1=" " ind2=" ">
      <subfield code="u">https://www.tandfonline.com/doi/full/10.1080/10920277.2024.2421221#d1e1051</subfield>
    </datafield>
  </record>
</collection>